viernes, 8 de julio de 2011

DESCRIPCIÓN DE LA FOTOSINTESIS

La Fotosíntesis es un proceso en virtud del cual los organismos con clorofila, como las plantas verdes, la salgas y algunas bacterias, capturan energía en forma de luz y la transforman en energía química. Prácticamente toda la energía que consume la vida de la biosfera terrestre ²la zona del planeta en la cual hay vida² procede de la fotosíntesis. La fotosíntesis se realiza en dos etapas: una serie de reacciones que dependen de la luz y son independientes de la temperatura, y otra serie que dependen de la temperatura y son independientes de la luz. La velocidad de la primera etapa, llamada reacción lumínica, aumenta con la intensidad luminosa (dentro de ciertos límites), pero no con la temperatura. En la segunda etapa, llamada reacción en la oscuridad, la velocidad aumenta con la temperatura (dentro de ciertos límites), pero no con la intensidad luminosa.

Visión general de la fotosíntesis: sus etapas
1. Los organismos fotosintéticos productores de O2 usan energía lumínica, CO2 y agua para producir la materia orgánica necesaria para su alimentación. El O2 que liberan se forma con átomos provenientes del agua.

2. La fotosíntesis se realiza en dos etapas: la lumínica, en la que se utiliza la energía de la luz para sintetizar ATP y NADPH, y la fijadora de carbono, que utiliza los productos de la primera etapa para la producción de azúcares.


La naturaleza de la luz

5. El modelo ondulatorio de la luz permite a los físicos describir matemáticamente ciertos aspectos de la luz y el modelo fotónico permite otro tipo de cálculos y predicciones matemáticas. Estos dos modelos ya no se consideran opuestos uno al otro, sino complementarios, en el sentido de que es necesaria una síntesis de ambos para una descripción completa del fenómeno que conocemos como luz.

6. Los sistemas vivos absorben la energía lumínica mediante el uso de pigmentos. Los organismos fotosintéticos tienen distintos tipos de pigmentos: la clorofila, que se encuentra en los sacos tilacoides, los carotenoides y las ficobilinas. Existen diferentes tipos de clorofila: la clorofila a, que colecta energía luminosa y está involucrada en la transformación de energía lumínica en química; la clorofila b, presente en las plantas y las algas verdes, y la clorofila c de las algas marrones.

7. La correspondencia entre el espectro de absorción de las clorofilas a y b y el espectro de absorción de la fotosíntesis indica una estrecha relación entre ésta y aquéllas (en ambos casos se observan dos picos, uno en la zona del rojo y otro en la del azul). Los carotenoides absorben en forma muy eficiente longitudes de onda que no son absorbidas por la clorofila.




El transporte de electrones: los foto sistemas y la ATP sintetiza.

 Los organismos fotosintéticos poseen dos foto sistemas, cada uno formado por una antena colectora de luz y un centro de reacción fotoquímica que incluye una molécula de clorofila a. Ambos foto sistemas se diferencian por el pico de absorción de la clorofila: el Foto sistema I lo presenta a 700 nm; el Foto sistema II, a 680 nm.

 En un flujo no cíclico de electrones, los dos foto sistemas trabajan en forma simultánea y continua. Así se produce un flujo permanente de electrones desde el agua al Foto sistema II, de éste al Foto sistema I y de este último al NADP+.


 Cuando los dos foto sistemas trabajan en forma independiente, se forma un flujo cíclico de electrones. En este caso no se forma NADPH, pero se sintetiza ATP. Es una ruta alternativa que permite regular la cantidad de NADPH y ATP formados en presencia de luz y, probablemente, aumenta la eficiencia en la formación de ATP cuando coexiste con el flujo no cíclico de electrones.



Las reacciones que fijan carbono

 El ATP y el NADPH formados durante el transporte de electrones se utilizan en la reducción del CO2 a glucosa. La incorporación de CO2 en compuestos orgánicos se conoce como fijación del carbono y ocurre en forma cíclica (ciclo de Calvin). En las plantas verdes, el CO2 llega a las células fotosintéticas a través de aberturas especializadas llamadas estomas.

 El ciclo de Calvin comienza con la unión del CO2 a una molécula de cinco carbonos (ribulosa bifosfato) que luego se divide en dos moléculas de tres carbonos (fosfoglicerato). Cada seis vueltas del ciclo se introducen seis moléculas de CO2 y se producen dos moléculas de un azúcar de tres carbonos (gliceraldehído fosfato).

 Las plantas poseen un mecanismo de control que evita que el ciclo de Calvin ocurra durante la noche. La luz lo estimula indirectamente y las reacciones de fijación de carbono son inhibidas en la oscuridad.

 La fotorrespiración ocurre cuando la concentración de CO2 en la hoja es baja en relación con la de O2. Consiste en la oxidación de la ribulosa bifosfato, con formación de CO2 y agua. Es un proceso que disminuye la eficiencia fotosintética de las plantas.

En las células del mesófilo de las plantas C4, el CO2 se une a un compuesto de tres carbonos (fosfoenolpiruvato), formando oxalacetato. Este último se convierte en malato y pasa a zonas más profundas de la hoja, donde libera CO2 que ingresa en el ciclo de Calvin. Este proceso, que involucra gasto de energía, representa una adaptación a las sequías y a intensidades lumínicas y temperaturas altas.



Utilización de los productos de la fotosíntesis

 El gliceraldehído fosfato producido por el ciclo de Calvin se integra en glucosa o fructosa. Las células vegetales usan estas sustancias para elaborar almidón, celulosa y sacarosa; las células animales las usan para elaborar glucógeno. Todas las células utilizan azúcares para la elaboración de otros carbohidratos, lípidos y aminoácidos. Además, la oxidación del carbono fijado es la fuente de energía del ATP en todas las células heterótrofas.




El balance entre la fotosíntesis y la respiración   En las plantas, la fotosíntesis y la respiración ocurren en forma simultánea. La intensidad lumínica a la cual se igualan sus velocidades es el punto de compensación para la luz. La concentración de CO2 a la cual se igualan es el punto de compensación para el CO2. Por debajo de estos puntos de compensación, la respiración excede a la fotosíntesis y la planta no crece. Como muchos órganos vegetales no fotosintetizan, para que una planta se mantenga y crezca, la fotosíntesis debe exceder largamente la tasa de respiración.



1 comentario:

  1. una pregunta en la foto que se encuentra aqui sobre el proceso de la fotosintesis esta que la hoja en el dia absorbe oxigeno y elimina dioxido de carbono pero eso es en la noche!!!! si tengo razón enviar un email a luisata17@gmail.com gracias por si respuesta en verdad la necesito pues soy educadora

    ResponderEliminar